Robust RegBayes: Selectively Incorporating First-Order Logic Domain Knowledge into Bayesian Models
نویسندگان
چکیده
Much research in Bayesian modeling has been done to elicit a prior distribution that incorporates domain knowledge. We present a novel and more direct approach by imposing First-Order Logic (FOL) rules on the posterior distribution. Our approach unifies FOL and Bayesian modeling under the regularized Bayesian framework. In addition, our approach automatically estimates the uncertainty of FOL rules when they are produced by humans, so that reliable rules are incorporated while unreliable ones are ignored. We apply our approach to latent topic modeling tasks and demonstrate that by combining FOL knowledge and Bayesian modeling, we both improve the task performance and discover more structured latent representations in unsupervised and supervised learning.
منابع مشابه
Regularized Bayesian Inference and Infinite Latent SVMs Bayesian Inference with Posterior Regularization and applications to Infinite Latent SVMs
Existing Bayesian models, especially nonparametric Bayesian methods, rely on specially conceived priors to incorporate domain knowledge for discovering improved latent representations. While priors can affect posterior distributions through Bayes’ theorem, imposing posterior regularization is arguably more direct and in some cases can be more natural and easier. In this paper, we present regula...
متن کاملBayesian inference with posterior regularization and applications to infinite latent SVMs
Existing Bayesian models, especially nonparametric Bayesian methods, rely on specially conceived priors to incorporate domain knowledge for discovering improved latent representations. While priors affect posterior distributions through Bayes’ rule, imposing posterior regularization is arguably more direct and in some cases more natural and general. In this paper, we present regularized Bayesia...
متن کاملRobust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملPR-OWL: A Framework for Probabilistic Ontologies
Across a wide range of domains, there is an urgent need for a wellfounded approach to incorporating uncertain and incomplete knowledge into formal domain ontologies. Although this subject is receiving increasing attention from ontology researchers, there is as yet no broad consensus on the definition of a probabilistic ontology and on the most suitable approach to extending current ontology lan...
متن کاملA Framework for Incorporating General Domain Knowledge into Latent Dirichlet Allocation Using First-Order Logic
Topic models have been used successfully for a variety of problems, often in the form of applicationspecific extensions of the basic Latent Dirichlet Allocation (LDA) model. Because deriving these new models in order to encode domain knowledge can be difficult and time-consuming, we propose the Fold·all model, which allows the user to specify general domain knowledge in First-Order Logic (FOL)....
متن کامل